Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding baseline O3 is important as it defines the fraction of O3 coming from global sources and not subject to local control. We report the occurrence and sources of high baseline ozone days, defined as a day where the daily maximum 8 h average (MDA8) exceeds 70 ppb, as observed at the Mount Bachelor Observatory (MBO, 2.8 km asl) in Central Oregon from 2004 to 2022. We used various indicators and enhancement ratios to categorize each high-O3 day: carbon monoxide (CO), aerosol scattering, the water vapor mixing ratio (WV), the aerosol scattering-to-CO ratio, backward trajectories, and the NOAA Hazard Mapping System Fire and Smoke maps. Using these, we identified four causes of high-O3 days at the MBO: Upper Troposphere/Lower Stratosphere intrusions (UTLS), Asian long-range transport (ALRT), a mixed UTLS/ALRT category, and events enhanced by wildfire emissions. Wildfire sources were further divided into two categories: smoke transported in the boundary layer to the MBO and smoke transported in the free troposphere from more distant fires. Over the 19-year period, 167 high-ozone days were identified, with an increasing fraction due to contributions from wildfire emissions and a decreasing fraction of ALRT events. We further evaluated trends in the O3 and CO data distributions by season. For O3, we found an overall increase in the mean and median values of 2.2 and 1.5 ppb, respectively, from the earliest part of the record (2004–2013) compared to the later part (2014–2022), but no significant linear trends in any season. For CO, we found a significant positive trend in the summer 95th percentiles, associated with increasing fires in the Western U.S., and a strong negative trend in the springtime values at all percentiles (1.6% yr−1 for 50th percentile). This decline was likely associated with decreasing emissions from East Asia. Overall, our findings are consistent with the positive trend in wildfires in the Western United States and the efforts in Asia to decrease emissions. This work demonstrates the changing influence of these two source categories on global background O3 and CO.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract. We characterize the aerosol physical and optical properties of 13 transported biomass burning (BB) events. BB events included long-rangeinfluence from fires in Alaskan and Siberian boreal forests transported to Mt. Bachelor Observatory (MBO) in the free troposphere (FT) over 8–14+ d and regional wildfires in northern California and southwestern Oregon transported to MBO in the boundary layer (BL) over 10 h to 3 d. Intensive aerosol optical properties and normalized enhancement ratios for BB events were derived from measured aerosol light scattering coefficients (σscat), aerosol light-absorbing coefficients (σabs), fine particulate matter (PM1), and carbon monoxide (CO) measurements made from July to September 2019, with particle size distribution collected from August to September. The observations showed that the Siberian BB events had a lower scattering Ångström exponent (SAE), a higher mass scattering efficiency (MSE; Δσscat/ΔPM1), and a bimodal aerosol size distribution with a higher geometric mean diameter (Dg). We hypothesize that the larger particles and associated scatteringproperties were due to the transport of fine dust alongside smoke in addition to contributions from condensation of secondary aerosol, coagulation of smaller particles, and aqueous-phase processing duringtransport. Alaskan and Siberian boreal forest BB plumes were transported long distances in the FT and characterized by lower absorptionÅngström exponent (AAE) values indicative of black carbon (BC)dominance in the radiative budget. Significantly elevated AAE values wereonly observed for BB events with <1 d transport, which suggests strong production of brown carbon (BrC) in these plumes but limited radiative forcing impacts outside of the immediate region.more » « less
-
Abstract. Long et al. (2021) conducted a detailed study of possible interferences inmeasurements of surface O3 by UV spectroscopy, which measures the UV transmission in ambient and O3-scrubbed air. While we appreciate the careful work done in this analysis, there were several omissions, and in one case, the type of scrubber used was misidentified as manganese dioxide (MnO2) when in fact it was manganese chloride (MnCl2). This misidentification led to the erroneous conclusion that all UV-based O3 instruments employing solid-phase catalytic scrubbers exhibit significant positive artifacts, whereas previous research found this not to be the case when employing MnO2 scrubber types. While the Long et al. (2021) study, and our results, confirm the substantial bias in instruments employing an MnCl2 scrubber, a replication of the earlier work with an MnO2 scrubber type and no humidity correction is needed.more » « less
An official website of the United States government
